This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713617200

Novel Synthesis and Structures of Amines and Triazole-Derived Glycoside and Nucleoside Derivatives of Phosphanyl Sugar Analogs

Mitsuji Yamashita; Kazumitsu Suzuki; Yukihiro Kato; Akihito Iida; Koichi Ikai; Putta Mallikarjuna Reddy; Tatsuo Oshikawa

To cite this Article Yamashita, Mitsuji, Suzuki, Kazumitsu, Kato, Yukihiro , Iida, Akihito , Ikai, Koichi , Reddy, Putta Mallikarjuna and Oshikawa, Tatsuo(1999) 'Novel Synthesis and Structures of Amines and Triazole-Derived Glycoside and Nucleoside Derivatives of Phosphanyl Sugar Analogs', Journal of Carbohydrate Chemistry, 18: 8, 915-935
To link to this Article: DOI: 10.1080/07328309908544044
URL: http://dx.doi.org/10.1080/07328309908544044

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


NOVEL SYNTHESIS AND STRUCTURES OF AMINES AND TRIAZOLEDERIVED GLYCOSIDE AND NUCLEOSIDE DERIVATIVES OF

 PHOSPHANYL SUGAR ANALOGS ${ }^{1}$Mitsuji Yamashita,* Kazumitsu Suzuki, Yukihiro Kato, Akihito Iida, Koichi Ikai, Putta Mallikarjuna Reddy, and Tatsuo Oshikawa
Department of Materials Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

Received January 20, 1999 - Final Form June 29, 1999

Abstract

3-Methyl-1-phenyl-2-phospholene and 1-phenyl-2-phospholene 1-oxides were converted into 2-bromo-3-hydroxy-3-methyl-1-phenylphospholane and 2-bromo-3-hydroxy-1-phenylphospholane 1 -oxide (1-bromo-1,3,4-trideoxy-1,4-C-[(R,S)-phenylphosphi-nylidene]-glycero-tetrofuranose) by the action of bromine in aqueous medium. The bromo substituent of the phospholane was substituted by treatment with amines or an azide anion to afford novel glycoside derivatives of phosphanyl sugar analogs such as 2-amino-3-hy-droxy-1-phenylphospholane (3,4-dideoxy-1,4-C-[(R, S)-phenylphosphinylidene]-glycerotetrofuranosylamine) and 2-azido-3-hydroxy-3-methyl-1-phenylphospholane 1-oxides with retention of the configuration. The 1,3 -dipolar cycloaddition of the 2 -azido derivative of the phospholane with alkynes gave 3-hydroxy-3-methyl-1-phenyl-2-(triazol-1'-yl)phospholane 1-oxides as a novel triazole-derived nucleoside of phosphanyl sugar analogs. The structure of the glycoside and nucleoside derivatives of the phosphanyl sugar analogs prepared was deterimined from IR, NMR; and X-ray crystallography analysis.

INTRODUCTION

Normal sugar derivatives, represented by Haworth structures, have a heterocyclic structure with an oxygen atom in the hemiacetal ring. Replacement of the oxygen atom in
the hemiacetal ring of normal sugars by a hetero atom or a carbon atom leads to pseudo sugars, some of which have been widely investigated in the fields of synthetic, biological, and medicinal chemistry. In particular, hetero sugars in which the ring oxygen has been replaced by a nitrogen, sulfur, or selenium atom have been extensively studied and widely developed. ${ }^{2}$ Synthesis of phosphanyl sugars, which belong to a category of pseudo sugar derivatives having a phosphorus atom instead of the oxygen atom in the hemiacetal ring of sugars, have been investigated by conventional methodology using sugar starting materials. However, the multistep synthesis methods required to prepare a wide variety of phosphanyl sugar derivatives such as glycosides and nucleosides in order to elucidate structure-activity relationships has limited their development. They have been mainly prepared from sugars as starting materials with suitable reaction sequences of OH group protections, functional group interconversions, C-P bond formation, cyclization with the P atom, deprotection, etc. ${ }^{3}$ The fact that amino and thio sugars are known to exist in nature, while phosphanyl sugar derivatives have not yet been found in naturally occurring products may also have delayed the development of phosphanyl sugar chemistry.

In previous papers, ${ }^{4.5}$ we reported the synthesis of phosphanyl sugar derivatives starting from 2- and 3-phospholene derivatives, having the unsaturated five membered phosphorus heterocycles. We are further interested in the synthesis of glycosides and/or nucleosides of phosphanyl sugars from phospholenes since O - and N-glycosides of normal sugars exist widely and play important biological roles in nature. ${ }^{2}$ Moreover nucleosides such as azidothimidine (AZT), which is an anti-HIV agent with an N_{3} substituent on the sugar moiety of the nucleoside, ${ }^{6}$ are also biologically important substances. Thus, preparation of sugar derivatives such as glycosides and nucleosides for biological study represents an important research area of carbohydrate chemistry. ${ }^{7}$ As bioactive nucleosides, ribavirin, deoxyfluridine, cytosine arabinoside, and 5-fluorodeoxyuridine as well as AZT are known as anti-influenza, or anti-tumor reagents and these nucleosides have normal sugar moieties. ${ }^{8.11}$ In addition, some pseudo sugar nucleosides exist in nature and show interesting bioactivities such as anti-bacterial, anti-tumor, and anti-virus activities. Some examples are aristeromycin, cyclaradine, thiothymidine, thioddC, and dioxolane $T{ }^{12}$ however, no phosphanyl sugar nucleoside has been reported. The present paper deals with the synthesis and the structure determination of glycoside and nucleoside derivatives of phosphanyl sugar analogs using 2-phospholenes as the starting materials.

RESULTS AND DISCUSSION

Reaction of 3-methyl-1-phenyl-2-phospholene 1-oxide (1A) and 1-phenyl-2-phospholene 1-oxide (1 B$)^{13}$ with bromine or N-bromoacetamide (NBA) in chloroform-water or
acetone-water at room temperature afforded a mixture of threo and erythro bromohydrin derivatives 2A and 2B. Fractional recrystallization of 2B from chloroform-carbon tetrachloride afforded threo 2-bromo-3-hydroxy-1-phenylphospholane 1-oxide (threo 2B; 1-bromo-1,3,4-trideoxy-1,4-C-[(R)-phenylphosphinylidene $]-\beta$-D-glycero-tetrofuranose and the enantiomer; mp $180-183{ }^{\circ} \mathrm{C}$; yield 43%) and erythro 2-bromo-3-hydroxy-1-phenylphospholane 1-oxide (erythro 2B; 1-bromo-1,3,4-trideoxy-1,4-C-[(R)-phenylphosphinyl-idene]- α-L-glycero-tetrofuranose and the enantiomer; mp $136-139{ }^{\circ} \mathrm{C}$; yield 24%). Fractional recrystallization of a mixture of erythro and threo products 2A (ca. 1:3), gave threo 2-bromo-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (threo 2A) in 46% yield. ${ }^{14}$

Reaction of bromohydrin erythro 2 B with some primary and secondary amines at 40 ${ }^{\circ} \mathrm{C}$ afforded novel phosphanyl sugar N -glycosides, 2-amino-3-hydroxy-1-phenylphospholane 1-oxides (3Ba-d; 3,4-dideoxy-1,4-C-[(R)-phenylphosphinylidene]- α-L-glycerotetrofuranosylamines and the enantiomers; Table 1). Treatment of bromohydrin erythro $\mathbf{2 B}$ with triethylamine or primary and secondary amines at room temperature gave almost quantitatively threo 2,3-epoxy-1-phenylphospholane 1-oxide (threo 4B; 1,2-anhydro-3,4-dideoxy-1,4-C-[(R)-phenylphosphinylidene $]-\beta-\mathrm{L}$-glycero-tetrofuranose and the enantiomer). Epoxide threo 4B was smoothly converted into erythro N-glycosides 3Ba-d by the action of primary or secondary amines at $40^{\circ} \mathrm{C}$. At $40^{\circ} \mathrm{C}$, the reaction of 2 B with primary or secondary amines afforded N-glycosides of phosphanyl sugar analogs 3Ba-d in one pot through intermediary 1,2 -anhydro phosphanyl sugars 4 B . Therefore, retention of configuration at the Cl position of phosphanyl sugar analogs, N-glycosides 3Ba-d, from $\mathbf{2 B}$ are observed through different reaction conditions, with and without isolation of intermediate epoxide 4B.

Acyl derivatives of α-D-glucopyranosyl bromide are known to be often converted by treatment of amines into 2-hydroxyglycals with elimination of hydrogen halide, instead of formation of N-glycosides by substitution of the halogen with amines. ${ }^{15}$ An $\mathrm{S}_{\mathrm{N}} 1$ type substitution reaction of $2,3,4,6$-tetra- O-acetyl- α-D-glucopyranosyl bromide with sodium iodide or silver fluoride is reported to give thermally more stable α or β anomer of the corresponding glucopyranosyl halide when neighbouring group participation of the 2 -substituent is available. ${ }^{16}$ On the other hand, β-D-glucopyranosyl fluoride was converted into the corresoponding methyl glucoside by treatment with methoxide via epoxide formation by participation of the trans 2-hydroxy group in the elimination of the fluoro group to give the 1,2-epoxide derivative, this method being called the Micheel synthesis. ${ }^{17,18}$ Preparation of 1,2 -anhydro- α-D-glucose or the corresponding tri- O-acetyl derivative ("Brigl's anhydride") ${ }^{18}$ was carried out using careful ammonolysis of $3,4,6$-tri- O-acetyl- α-D-glucopyra-

1 A

1 B

Figure 1. Structure of phospholenes 1 A and 1 B .

Table 1. Phosphanyl sugar N-glycosides prepared.

Starting material	$N R^{1} \mathrm{R}^{2} \mathrm{R}^{3}$			Reaction condition		Product		
	R^{1}	R^{2}	R^{3}	Solvent	Temp(${ }^{\circ} \mathrm{C}$)) No.	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield(\%)
erythro 2B	Me	H	H	$\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$	40	erythro 3Ba	Syrup	56
erythro 2B	$i-\mathrm{Pr}$	H	H	MeOH	40	erythro 3Bb	138.5-140	75
erythro 2B	t-Bu	H	H	MeOH	40	erythro 3Bc	184-185	55
erythro 2B	Et	Et	H	MeOH	40	erythro 3Bd	Syrup	84
erythro 2B	Et	Et	Et	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{t}^{\text {a }}$	threo 4B	Syrup	100
threo 2B	Et	Et	Et	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{rt}^{\text {a }}$	erythro 4B	116-118	91
threo 4B	i-Pr	H	H	MeOH	40	erythro 3Bb	138.5-140	100
erythro 4B	Et	Et	Et	MeOH	40			$\mathrm{NR}^{8)}$

a. rt, room temperature; NR, No reaction.
nosyl chloride. Therefore, facile epoxide formation followed by substitution with a nucleophile to give an N-glycoside from phosphanyl sugar derivative 2B by an amine base treatment may be a unique feature in carbohydrate chemistry, because substitution of a halogen of acetylated glycosyl halides most generally occurs by participation of a 2-acetoxy group.

Scheme 1. Preparation of N-glycosides of phosphanyl sugars 3Ba-d.

Table 2. Observed ${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz) parameters for compound 3Bcin CDCl_{3}.)

Chemical shift δ (ppm)											
H1	H2	H3	H3'	H4	H4'	$t-\mathrm{Bu}$	OH	NH	$o-\mathrm{Ph}$	$m-\mathrm{Ph}$	p-Ph
2.82	3.97	2.47	1.78	2.33	2.05	0.92	1.86	2.98	7.75	7.50	7.53

Coupling constant $(\mathrm{Hz})^{\mathrm{b})}$			
$J_{1,2}=8.3$	$J_{1, \mathrm{p}}=4.9$		
$J_{2,3^{\prime}}=9.6$	$J_{2,3}=5.0$	$J_{2, \mathrm{P}}=5.0$	
$J_{3, \mathrm{P}}=25.0$	$J_{3,3^{\prime}}=13.2$	$J_{3,4^{\prime}}=8.4$	$J_{3,4}=3.6$
$J_{3: 4}=7.8$	$J_{3, \mathrm{P}} \doteqdot 8$	$J_{3,4^{4}}=11.0$	$J_{4,4^{4}} \doteqdot 16$
		$J_{4, \mathrm{P}}=8.0$	
		$J_{4, \mathrm{P}} \doteqdot 26$	

a. Measured on a VXR-500 instrument (Okayama University) at $21^{\circ} \mathrm{C}$.
b. Coupling constants for aromatic protons are omitted.

Figure 2. Favorable conformation (${ }^{2} E$) of N-glycoside 3Bc based on ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ analysis. (Numbers outside the parenthesis correspond to carbohydrate nomenclature numbering while those within the parenthesis correspond to heterocycle nomenclature numbering, respectively.)

The structure of $1-N-t$-butyl-3,4-dideoxy-1,4-C-[(S)-phenylphosphinylidene]- β-D-glycero-tetrofuranosylamine and its enantiomer was established for phosphanyl sugar 3B c by analysis of its $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum (Table 2). The $J_{1,2}$ value of 8.3 Hz shows that $\mathrm{C}-1-\mathrm{H}-1$ and $\mathrm{C}-2-\mathrm{H}-2$ bonds are diaxial, whereas the small $J_{1, \mathrm{P}}$ value of 4.9 Hz indicates a trans relationship of $\mathrm{C}-1-\mathrm{H}-1$ and $\mathrm{P}=\mathrm{O}$ bonds. ${ }^{19,20}$ The ${ }^{1} \mathrm{H}$ NMR analysis reveals that N-glycoside 3 Bc exisits predominantly in the ${ }^{2} E$ conformation in the solution (Figure 2).

Reaction of the threo 2-bromo derivative, threo 2A, with sodium azide in DMF for 24 h at $70^{\circ} \mathrm{C}$ afforded threo 2-azido-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (threo 3Aa; 1-azido-1,3,4-trideoxy-2-methyl-1,4-C-[(R)-phenylphosphinylidene]- β-D-glycerotetrofuranose and its enantiomer) in 87% yield. Hydrogenolysis of the azido derivative, threo 3A a, with an atmospheric pressure of H_{2} in the presence of Pd / C catalyst for 24 h at room temperature gave the corresponding threo 2-amino derivative, 2-amino-3-hydroxy-3-methyl-1-phenylphospholane 1 -oxide (threo 3 Ab ; 3,4-dideoxy-2-methyl-1,4-C-[(R)-phenylphosphinylidene]- α-L-glycero-tetrofuranosylamine and the enantiomer), in 99% yield (Scheme 2). These products 3Aa, 3Ab, and 3Ba-d are N-glycosides of phosphanyl sugar analogs. The structure of threo 2-bromo- and threo 2-azido-3-methyl-1-phenylphospholane 1-oxides (2A and 3Aa) are shown in Figures 3 and 4, respectively. The retention of the configuration for the reaction of 2 A to afford 3 A a may be explained by the formation of the intermediate epoxide 4A.

Scheme 2. Preparation of N -glycosides 3Aa and 3Ab.

As mentioned in Micheel's method ${ }^{17,18}$ for the preparation of glycosides of normal sugars, sodium methoxide in methanol converts β-D-glucopyranosyl fluoride into methyl β -D-glucopyranoside via a 1,2-epoxide ring-opening. 1,6-Anhydro- β-D-glucopyranose is usually obtained when phenolic glycosides undergo alkaline hydrolysis. The formation of 1,6-anhydro glucose derivatives is explained by a mechanism where an attack by the 6hydroxyl group occurs at the Cl position of intermediary 1,2-anhydride formed instead of the attack at the C 2 position of the epoxide. ${ }^{21-23}$ The epoxide ring opening of 1,2-anhydro phosphanyl sugar 4A or 4B to afford l-azido or 1-amino phosphanyl sugar N-glycoside may be attributable to a strong electron-withdrawal property of the $\mathrm{P}=\mathrm{O}$ group, by which

Figure 3. ORTEP drawing of 2-bromo compound 2A. ${ }^{24}$

Figure 4. ORTEP drawing of 2-azido compound 3Aa. ${ }^{25}$
the Cl position of the 1,2 -anhydride becomes more electrophilic than the C 2 position for the attack of amines or azide ion, although the Cl position is sterically more hindered by the phenyl group than is the C 2 position.

For the preparation of nucleosides, the following two major methodologies are usually applied: (a) the substitution reaction of a leaving substituent on an anomeric carbon
atom by an activated nucleic acid base; (b) the cyclization of glycosyl ureas or glycosyl amines of sugar derivatives by a condensation reaction with acrylamides or the dipolar cycloaddition with dipolarophiles such as alkynes to form nucleic acid bases or nitrogen heterocycles. ${ }^{26 \cdot 32}$

Scheme 3. Formation of epoxide 4A from 2A by treatment with TMS-pyrimidine.

Reaction of 2-bromo-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (2A) with trimethylsilylated pyrimidine was carried out according to the method (a); however, the reaction afforded only intramolecular substitution reaction product, epoxide 4A, instead of an intermolecular substitution reaction product, a pyrimidine nucleoside.

1,3-Dipolar cycloaddition of azido derivative, threo 3Aa, with alkynes 5a-h in 1,2-dimethoxyethane (DME) under reflux afforded regioisomeric phosphanyl sugar nucleoside analogs 6Aa-h and 7Ab,e,f having a triazole ring as the nitrogen heterocyclic nucleus depending on the substituents on the alkyne derivatives (Scheme 4 and Table 3).

$$
\begin{array}{r}
\mathrm{R}^{1}, \mathrm{R}^{2} ; \mathrm{H}, \mathrm{TMS}, \mathrm{COOMe}, \mathrm{COOEt}, \\
\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CMe}_{2} \mathrm{OH}, \mathrm{COOH}
\end{array}
$$

Scheme 4. Preparation of nucleosides of phosphanyl sugar analogs 6A and 7A.

Disubstituted alkynes $5 \mathrm{c}, 5 \mathrm{~d}, 5 \mathrm{~g}$, and 5 h afforded triazole derivatives $\mathbf{6 A c}$, $\mathbf{6 A d}$, 6 Ag , and 6 Ah , respectively, whose structures were determined by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR

Table 3. Phosphanyl sugar nucleoside analogs having a triazole ring as the nitrogen heterocyclic nucleus.

Alkyne			Reaction time(h)	Phosphanyl sugar nucleoside analogs			
No.	R^{1}	R^{2}		No.	Yield(\%)	Ratio of 6A:7A	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$
5 a	H	SiMe_{3}	12	6Aa	64.9	6Aa only ${ }^{\text {a }}$	222
5b	H	COOMe	12	$6 \mathrm{Ab}+7 \mathrm{Ab}$	66.6	1:1 ${ }^{\text {b) }}$	221-223 ${ }^{\text {d) }}$
5c	COOMe	COOMe	18	6 Ac	88.2	------	205-207
5d	COOEt	COOEt	24	6Ad	79.4	------	175-176
5 e	H	$\mathrm{CH}_{2} \mathrm{OH}$	48	$6 \mathrm{Ae}+7 \mathrm{Ae}$	66.0	1:1 $1^{\text {c }}$	224-226 ${ }^{\text {e }}$
5 f	H	$\mathrm{CMe}_{2} \mathrm{OH}$	96	$6 \mathrm{Af}+7 \mathrm{Af}$	50.9	$3: 1^{\text {c }}$	198-202 ${ }^{\text {b }}$
5 g	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{OH}$	72	6 Ag	66.0	----	206
5h	COOH	COOH	24	6Ah	55.2	------	175

a. Isolated by crystallization.
b. Based on the ratios of 3-Me group and the olefin protons by ${ }^{1} \mathrm{H}$ NMR.
c. Isolated by column chromatography on silica gel.
d. Melting point for 7 Ab .
e. Melting point for 7Ae.
f. Melting point for $6 \mathbf{A f}$.
spectral analysis. Typical observations for triazole derivatives 6Ad compared with azido derivative 3Ad in NMR are as follows: down field chemical shift of $\mathrm{N}-\mathrm{CH}$ for triazole 6Ad (5.57 ppm) was observed compared with that for azido $3 \mathrm{Ad}(4.00 \mathrm{ppm})$ by ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$; triazole $s p^{2}$ carbon atoms were observed for 6 Ad at 131.79 and 138.34 ppm by ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$; and only one signal was observed for 6 Ad at 70.49 ppm by ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectra for 6 Ae and 7 Ae showed the olefinic proton signals at 7.86 and 7.36 ppm , respectively, suggesting that the more polarized isomer resonates at lower field than the less polarized isomer does. Trimethylsilylacetylene (5 a) gave nucleo- side 6Aa (70.39 ppm by ${ }^{31} \mathrm{P}$ NMR, CDCl_{3}) selectively as the sole regioisomer, ${ }^{33}$ whereas methyl propiolate (5 b) produced nucleoside 6 Ab and 7 Ab in a $1: 1$ ratio. Frontier π electron densities were obtained for $\mathbf{5 a}, \mathbf{5 b}$, and 2-azidophospholane derivative $\mathbf{3 A a}$ by an MO calculation using MOPAC PM3 (Stuart) ${ }^{34}$ as shown in Figure 5. For TMS derivative 5a the unsubstituted $s p$ carbon atom has almost no π-electron density while the substituted one exclusively has π-electron density. For propiolate $\mathbf{5 b}$ the unsubstituted $s p$ carbon
Trimethylsilylacetylene (5a)

Methyl propiolate (5b)

2-Azidophospholane 3Aa

Figure 5. Comparisons of π-electron densities of trimethylsilylacetylene (5a), methyl propiolate (5b), and 2-azidophospholane derivative 3A a based on MO calculations using MOPAC PM3 (Stuart).
atom has a larger π-electron density than that of substituted $s p$ carbon atom. Both effects of steric hindrance and electron density caused by the TMS group of 5a may introduce the predominant formation of nucleoside 6 Aa . In contrast to 5 a , methyl propiolate (5 b) has a larger electron density on the unsubstituted and less hindered $s p$ carbon, hence 1:1 regioisomeric products $\mathbf{6 A b}$ and 7 Ab are formed. Triazolyl phosphanyl sugar nucleosides $\mathbf{6 A}$ and 7A are the first ribavirin type pseudo sugar nucleosides reported.

Phosphanyl sugar nucleoside analog 6Ad was purified by recrystallization from chloroform, affording a good single crystal. The X-ray analysis of 6Ad revealed the structure of the novel nucleoside of the phosphanyl sugar as shown by the ORTEP drawing in Figure 6 and afforded bond lengths, bond angles, and torsion angles as shown in Table 4.

EXPERIMENTAL

General methods. Melting points were determined by a Yanagimoto MP-S2 micro-melting point apparatus and are reported uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Japan Electron Optics Laboratory (JEOL) JNM-EX90 (at 90 MHz), JEOL JNM-EX270 (at 270 MHz), JEOL JNM-EX400 (at 400 MHz), and Varian VXR-500 (at 500 MHz) spectrometers using CDCl_{3} and TMS as the solvent and the internal standard, respectively. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL EX90 (at 22.40 MHz)

Figure 6. ORTEP drawing of the nucleoside analog of phosphanyl sugar 6Ad having a triazole nucleus. ${ }^{35}$
spectrometer using CDCl_{3} and TMS as the solvent and the internal standard, respectively. ${ }^{31}$ P NMR spectra were measured by JEOL JNM-EX90 (at 36.18 MHz) and Varian VXR500 spectrometers using CDCl_{3} and $\mathrm{H}_{3} \mathrm{PO}_{4}$ as the solvent and the extemal standard, respectively. IR were recorded on Japan Spectroscopic Co. Ltd. (JASCO) FT/IR-8000 and A-3 spectrophotometers. MS spectra were measured using a Hitachi RMU7M GC-MS mass spectrometer. HPLC were carried out using JASCO UNIFLOW-211 with UVIDEC-$100-\mathrm{H}, \mathrm{FINEPAC} \mathrm{SIL}$, and $\mathrm{MeOH}-\mathrm{CHCl}_{3}(1: 20)$ as the detector, column, and solvent, respectively. X-ray crystallographies for single crystals were performed using Rigaku AFC7R and AFC5S diffractometers.

2-Phospholene 1-oxides 1A and 1B were prepared according to reported methods via cycloaddition reaction of 2-methyl-1,3-butadiene and 1,3-butadiene, respectively, with phosphorus trichloride. ${ }^{36-40}$

Table 4. Selected bond lengths, bond angles, and torsion angles for compound 6Ad. ${ }^{35}$

Selected bond length		Selected bond angle		Selected torsion angle	
Bond	Length (\AA)	Bond A	Angle (${ }^{\circ}$)	Bond Ang	Angle (${ }^{\circ}$)
$\mathrm{P}(1)-\mathrm{O}(2)$	1.496	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	112.1	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	39.2
$\mathrm{P}(1)-\mathrm{C}(1)$	1.857	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{C}(6)$	111.0	$C(1)-C(2)-C(3)-C(4)$	-48.9
$\mathrm{P}(1) \mathrm{C}(4)$	1.806	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	108.7	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{P}(1)$	34.8
$\mathrm{C}(1)-\mathrm{C}(2)$	1.566	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	103.7	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(1)$	-9.5
$\mathrm{C}(2)-\mathrm{C}(3)$	1.548	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	105.4	$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-17.4
$\mathrm{P}(1)-\mathrm{C}(6)$	1.799	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.8	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	-77.4
C(1)-N(1)	1.467	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	114.2	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	42.7
$\mathrm{N}(1)-\mathrm{N}(2)$	1.367	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	115.6	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$	-142.7
N(2)-N(3)	1.305	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$	107.2	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(13)$	-0.9
$N(3)-\mathrm{C}(13)$	1.359	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	121.8	$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(12)$) 0.3
$\mathrm{C}(12)-\mathrm{C}(13)$	1.359	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$	127.8	$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(1)$) 0.3
$N(1)-C(12)$	1.338	$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(13)$	108.5	$\mathrm{C}(13)-\mathrm{C}(12) \cdot \mathrm{N}(1)-\mathrm{N}(2)$) 0.9
C(6)-C(7)	1.392	$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(12)$) 109.2	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$	1.1
C(7)-C(8)	1.385	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(1)$	105.0	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	179.7
$\mathrm{C}(8) \cdot \mathrm{C}(9)$	1.355	$\mathrm{C}(4) \cdot \mathrm{P}(1)-\mathrm{C}(6)$	111.0	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	-179.7
$\mathrm{C}(9) \mathrm{C}(10)$	1.371	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.8	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	1.4
$\mathrm{C}(10)-\mathrm{C}(11)$	1.382	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	119.4	$\mathrm{C}(7) \cdot \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-2.0
$\mathrm{C}(11)-\mathrm{C}(6)$	1.377	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.7	$\mathrm{C}(8)-\mathrm{C}(9) \cdot \mathrm{C}(10)-\mathrm{C}(11)$	1.9
$\mathrm{C}(13)-\mathrm{C}(17)$	1.477	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.5	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11) \cdot \mathrm{C}(6)$	-1.3
$\mathrm{C}(12)-\mathrm{C}(14)$	1.496	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.5	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$) 0.7
$\mathrm{C}(17)-\mathrm{O}(4)$	1.194	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.5	$\mathrm{C}(11)-\mathrm{C}(6) \cdot \mathrm{C}(7)-\mathrm{C}(8)$	-0.8
$\mathrm{C}(2)-\mathrm{O}(3)$	1.423	$\mathrm{C}(10) \cdot \mathrm{C}(11)-\mathrm{C}(6)$	120.2	$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{O}(5)$) 2.4
$\mathrm{C}(2)$ C(5)	1.519	$\mathrm{C}(11) \cdot \mathrm{C}(6)-\mathrm{C}(7)$	119.4	C(17)-C(13)-C(12)-C(14)	(14) 0.5

erythro And threo 2-bromo-3-hydroxy-1-phenylphospholane 1-oxides (2B). To 1-phenyl-2-phospholene 1-oxide $\mathbf{1 B}(3.68 \mathrm{~g}, 20.7 \mathrm{mmol})$ in acetone (10 mL)-water (20 mL) was added NBA ($4.28 \mathrm{~g}, 1.5 \mathrm{eq}$) and stirred at room temperature until the brownish color of the solution disappeared, and the completion of the reaction was confirmed by TLC. Removal of the solvent and addition of carbon tetrachloride to the residue afforded a solid product, whose recrystallization from chloroform-carbon tetrachloride afforded 2.43 g (8.84 mmol) of threo 2B (yield 43\%). Fractional crystallization of the
mother liquid from chloroform-carbon tetrachloride gave $1.38 \mathrm{~g}(5.02 \mathrm{mmol})$ of erythro 2 B (yield 24\%).

For threo 2B: mp $180-183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 2.0-2.8 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, 4.1-4.8 (m, 2H, CHBr-CHOH), 5.7-6.0 (brs, $1 \mathrm{H}, \mathrm{OH}), 7.3-8.0(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; \mathrm{IR} \nu$ (KBr) $3200(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph}), 1180(\mathrm{P}=\mathrm{O}), 540(\mathrm{C}-\mathrm{Br}) ; 750(\mathrm{P}-\mathrm{C}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}) 275\left(\mathrm{M}^{+}\right)$, $277\left(\mathrm{M}^{+}+2\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrO}_{2} \mathrm{P}$ (275.1): C, 43.66; $\mathrm{H}, 4.40 ; \mathrm{P}, 11.26$. Found: C , 43.78; H, 4.29; P, 11.20.

For erythro $2 \mathrm{~B}: \mathrm{mp} 136-139{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.4-2.8\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, 3.9-4.3 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHBr}$), $4.7\left(\mathrm{dm}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=16 \mathrm{~Hz}, \mathrm{CHOH}\right.$), $5.8-6.1$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $7.3-8.0(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;$ IR $\nu(\mathrm{KBr}) 3250(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph}), 1180(\mathrm{P}=\mathrm{O}), 540(\mathrm{C}-\mathrm{Br})$.
threo Bromo-3-methyl-3-hydroxy-1-phenylphospholane 1-oxide (threo 2A). To 3-methyl-1-phenyl-2-phospholene 1 -oxide $1 \mathrm{~A}(5.53 \mathrm{~g}, 28.8 \mathrm{mmol})$ in chloroform-water ($1 / 4 \mathrm{v} / \mathrm{v}, 25 \mathrm{~mL}$) was added bromine ($3.0 \mathrm{~mL}, 2 \mathrm{eq}$) and the reaction mixture stirred for 3 d at room temperature. Work-up of the reaction mixture and fractional recrystallization from ethyl acetate gave $3.83 \mathrm{~g}(13.2 \mathrm{mmol})$ of threo 2 A in 46% yield; mp $150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.9-2.8\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.24$ (d, $1 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=5.10 \mathrm{~Hz}, 5.56(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.3-8.0(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 25.46 (d, $J_{\mathrm{CP}}=64.83 \mathrm{~Hz}, \mathrm{C}-5$), $26.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.68 \mathrm{~Hz}, \mathrm{Me}\right), 35.72\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.34 \mathrm{~Hz}\right.$, C-4), 50.12 (d, $J_{\mathrm{CP}}=65.50 \mathrm{~Hz}, \mathrm{C}-2$), $79.43\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=12.70 \mathrm{~Hz}, \mathrm{C}-3\right), 128.02$ (d, $\left.{ }^{3} J_{\mathrm{CP}}=12.03 \mathrm{~Hz}, m-\mathrm{Ph}\right), 131.88\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8.70 \mathrm{~Hz}, o-\mathrm{Ph}\right), 132.43\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.69 \mathrm{~Hz}, p-\mathrm{Ph}\right)$; ${ }^{31} \mathrm{P}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 68.937$; IR $\nu(\mathrm{KBr}) 3150(\mathrm{OH})$.
erythro 2-(N, N^{\prime}-Diethylamino)-3-hydroxy-1-phenylphospholane 1oxide (erythro 3Bd). Reaction of bromohydrin $2 \mathrm{~B}(89.4 \mathrm{mg}, 0.325 \mathrm{mmol})$ with excess N, N^{\prime}-diethylamine (2 mL) in methanol (3 mL) for 2 d at $40^{\circ} \mathrm{C}$ gave N-glycoside product erythro 3Bd. Removal of the volatile materials from the reaction mixture followed by washing the chloroform solution of the resulting residue with diluted sodium hydroxide (3 mL), further extraction of the water layer with chloroform, and chromatography of the residue on silica gel gave pure product $3 \mathrm{Bd}(72.9 \mathrm{~g}, 0.273 \mathrm{mmol})$ in 84% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95\left(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.5-2.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.7-3.3(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{CHNEt}_{2}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.6-4.0(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 4.3-4.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 7.4-8.1$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$); IR ν (neat) $3300(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph}), 1185(\mathrm{P}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}) 267\left(\mathrm{M}^{+}\right)$.

The same procedure gave amino derivatives of phosphanyl sugar glycosides.
For methylamine derivative 3Ba: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.3-2.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), $2.76(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}), 3.5-4.0(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{CHOH}), 7.1-8.0$ (m, 5H, Ph); IR ע (neat) $3300(\mathrm{OH}, \mathrm{NH}), 1445(\mathrm{P}-\mathrm{Ph}), 1180(\mathrm{P}=\mathrm{O}), 770$ and $700(\mathrm{Ph})$; MS (m / z) $226\left(\mathrm{M}^{+}\right)$.

For isopropylamine derivative $3 \mathrm{Bb}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.87(2 \mathrm{~d}, 5 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $\mathrm{CMe}_{2} \mathrm{H}$), 1.5-3.1 (m, $5 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CMe}_{2} \mathrm{H}$), 3.4-4.3 (brs, $2 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$), 7.4-8.0 (m, 5H, Ph); IR $\nu(\mathrm{KBr}) 3250,3450(\mathrm{OH}, \mathrm{NH}), 1440(\mathrm{P}-\mathrm{Ph}), 1160(\mathrm{P}=\mathrm{O}), 770$ and 700 (Ph); MS (m / z) $254\left(\mathrm{M}^{+}\right)$.

For tert-butylamine derivative $3 \mathrm{Bc}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ data are shown in Table 2. IR $\nu(\mathrm{KBr}) 3280,3250(\mathrm{OH}, \mathrm{NH}), 1440(\mathrm{P}-\mathrm{Ph}), 1160(\mathrm{P}=0), 770$ and $700(\mathrm{Ph}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z})$ $268\left(\mathrm{M}^{+}\right)$.
erythro 2,3-Epoxy-1-phenylphospholane 1-oxide (erythro 4B). threo Bromohydrin 2 B ($1.31 \mathrm{~g}, 4.75 \mathrm{mmol}$) was treated with triethylamine (4 mL) in methanol $(10 \mathrm{~mL})$ for 2 d at room temperature. The reaction mixture was concentrated in vacuo and the residue was dissolved into chloroform (40 mL), whose solution was washed with aqueous sodium hydrogencarbonate solution $(10 \mathrm{~mL})$ and water $(2 \times 10 \mathrm{~mL})$ and dried and concentrated under reduced pressure to give crystalline product erythro 4 B (recrystallized from carbon tetrachloride; $0.897 \mathrm{~g}, 4.31 \mathrm{mmol}$) in 91% yield; mp $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.6-3.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.39\left(\mathrm{dd},{ }^{2} J_{\mathrm{HP}}=30 \mathrm{~Hz}, \mathrm{P}(\mathrm{O}) \mathrm{CH}\right), 3.7-4.0(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 7.2-8.0(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; \mathrm{IR} \nu(\mathrm{KBr}) 1440(\mathrm{P}-\mathrm{Ph}), 1240$ and 835 (epoxide), 1200 ($\mathrm{P}=\mathrm{O}$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}$ (194.2): $\mathrm{C}, 61.86 ; \mathrm{H}, 5.71 ; \mathrm{P}, 15.95$ Found: C, 61.73; H, 5.64; P, 15.82.
threo 2-Azido-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (threo 3Aa). threo 2-Bromo-3-hydroxy-3-methyl-1-phenylphosphlane 1-oxide (threo 2A, 1.36 $\mathrm{g}, 4.71 \mathrm{mmol}$) was stirred for 1 d at $70^{\circ} \mathrm{C}$ with sodium azide in DMF (30 mL). Removal of volatile materials from the reaction mixture followed by washing of the chloroform solution $(50 \mathrm{~mL})$ of the residue with water $(3 \times 20 \mathrm{~mL})$ and removal of the solvent afforded crystalline azido derivative threo $3 \mathrm{Aa}\left(1.03 \mathrm{~g}, 4.10 \mathrm{mmol}\right.$) in 87% yield; mp $174-176^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.6-2.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.00(\mathrm{~d}, 1 \mathrm{H}$, ${ }^{2} J_{\mathrm{HP}}=1.98 \mathrm{~Hz}, \mathrm{CHN}_{3}$), $5.80(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.4-8.0(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $24.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.35 \mathrm{~Hz}, \mathrm{Me}\right), 26.39\left(\mathrm{~d}, J_{\mathrm{CP}}=63.48 \mathrm{~Hz}, \mathrm{C}-5\right), 36.23\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.68 \mathrm{~Hz}\right.$, $\mathrm{C}-4), 67.89\left(\mathrm{~d}, J_{\mathrm{CP}}=72.84 \mathrm{~Hz}, \mathrm{C}-2\right), 78.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=12.03 \mathrm{~Hz}, \mathrm{C}-3\right), 128.60(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=11.37 \mathrm{~Hz}, m-\mathrm{Ph}\right), 129.24\left(\mathrm{~d}, J_{\mathrm{CP}}=93.54 \mathrm{~Hz}, x-\mathrm{Ph}\right), 131.54\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.36 \mathrm{~Hz}, o-\mathrm{Ph}\right)$, $132.61\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.67 \mathrm{~Hz}, p-\mathrm{Ph}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 67.286$; IR $\nu(\mathrm{KBr}) 3150(\mathrm{OH})$, $2120\left(\mathrm{~N}_{3}\right)$.
threo (1R,2S, 3R)-2-(4',5'-Diethoxycarbonyl-1'H-1',2',3'-triazol-1'-yl)-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (6Ad). A mixture of 2-azido-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (threo 3Aa, $0.202 \mathrm{~g}, 0.804$
mmol) and diethyl acetylenedicarboxylate ($0.203 \mathrm{~g}, 1.19 \mathrm{mmol}$) in DME (3 mL) was refluxed for 1 d . The solvent was then removed in vacuo and chromatography on silica gel afforded $0.269 \mathrm{~g}(0.638 \mathrm{mmol})$ of triazole derivarive of nucleoside of phosphanyl sugar 6Ad in 79% yield; mp $175-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.33 and $1.36\left(2 \mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.4-3.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.32$ and 4.41 (2 q , $4 \mathrm{HJ}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.57\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=9.99 \mathrm{~Hz}, \mathrm{CH}\right), 6.15$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.3-7.8 (m, 5H, Ph); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.69$ and $13.90\left(2 \mathrm{~s}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.45$ (d, ${ }^{3} J_{\mathrm{CP}}=6.68 \mathrm{~Hz}, \mathrm{Me}$), 24.82 (d, $J_{\mathrm{CP}}=68.16 \mathrm{~Hz}, \mathrm{C}-5,37.56\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.68 \mathrm{~Hz}, \mathrm{C}-4\right)$, 61.55 and $63.07\left(2 \mathrm{~s}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 68.05\left(\mathrm{~d}, J_{\mathrm{CP}}=66.82 \mathrm{~Hz}, \mathrm{C}-2\right), 79.89\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=\right.$ $16.04 \mathrm{~Hz}, \mathrm{C}-3$), 127.84 ($\mathrm{d}, J_{\mathrm{CP}}=93.56 \mathrm{~Hz}, x-\mathrm{Ph}$), 128.02 ($\mathrm{d},{ }^{3} J_{\mathrm{CP}}=12.03 \mathrm{~Hz}, m-\mathrm{Ph}$), $131.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.01 \mathrm{~Hz}, o-\mathrm{Ph}\right), 131.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.02 \mathrm{~Hz}\right.$, triazole $\mathrm{C}-5$), 132.52 (d , ${ }^{4} J_{\mathrm{CP}}=2.69 \mathrm{~Hz}, p-\mathrm{Ph}$), $138.34\left(\mathrm{~s}\right.$, triazole $\mathrm{C}-4$ '), 158.00 and $159.40\left(2 \mathrm{~s}, 2 \times \mathrm{COOCH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 70.490$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ (421.4): C, $54.15 ; \mathrm{H}, 5.74 ; \mathrm{N}, 9.97, \mathrm{P}, 7.35$. Found: C, 54.02 ; H, 5.66 ; N, 5.87; P, 9.83 .

The same procedure gave triazole derivatives of phosphanyl sugar nucleosides $\mathbf{6 A}$ and 7 A .

For (trimethylsilyl)acetylene adduct 6Aa: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.12$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}$), $1.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.3-3.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=9.48 \mathrm{~Hz}, \mathrm{CH}\right), 6.36$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.2-7.7 (m, $5 \mathrm{H}, \mathrm{Ph}$), $7.34(\mathrm{~s}, 1 \mathrm{H}$, triazole H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.00$ (s, TMS), 23.98 (d, $J=6.68 \mathrm{~Hz}, \mathrm{Me}$), 25.24 (d, $J=62.83 \mathrm{~Hz}, \mathrm{C}-5$), 37.98 (d, $J=4.00 \mathrm{~Hz}$, C-4), 68.93 (d, J=68.84 Hz, C-2), 79.73 (d, $J=16.71 \mathrm{~Hz}, \mathrm{C}-3$), 127.88 (d, $J=92.89 \mathrm{~Hz}$, x-Ph), $128.00(\mathrm{~d}, J=11.86 \mathrm{~Hz}, m-\mathrm{Ph}), 130.85$ and 145.74 (2 s , triazole $\mathrm{C}-4^{\prime}$ and $\mathrm{C}-5^{\prime}$), $130.93(\mathrm{~d}, J=10.01 \mathrm{~Hz}, o-\mathrm{Ph}), 132.37(\mathrm{~d}, J=2.67 \mathrm{~Hz}, p-\mathrm{Ph}) ;{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta$ 68.257.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PSi}$ (349.4): C, $54.99 ; \mathrm{H}, 6.92 ; \mathrm{N}, 12.02$. Found: C , 54.69; H, 6.86; N, 11.90.

For methyl propiolate adducts 6 Ab and 7 Ab : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31$ and 1.53 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Me}$), 2.2-3.1 (m, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.76 and $3.83(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}$ for 6 Ab and 7 Ab), 4.93 (brs, $2 \mathrm{H}, 2 \mathrm{xOH}$), 5.44 and $6.23(2 \mathrm{~d}, 1 \mathrm{H}, J=90.3$ and $9.12 \mathrm{~Hz}, \mathrm{CH}$ for 6 Ab and 7 Ab$), 7.2-7.9(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.71$ and $8.30(2 \mathrm{~s}, 1 \mathrm{H}$, triazole H for 6 Ab and 7Ab).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ (335.3): C, $53.73 ; \mathrm{H}, 5.41$; $\mathrm{N}, 12.53$. Found: C , 53.52 ; H, 5.32; N, 12.38.

For dimethyl acetylenedicarboxylate adduct $6 \mathrm{Ac}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.33(s, 3 \mathrm{H}$, Me), 2.5-3.1 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.89 and 3.98 ($2 \mathrm{~s}, 5 \mathrm{H}, 2 \times \mathrm{COOMe}$), 5.64 (d, 1 H ,
$J=10.56 \mathrm{~Hz}, \mathrm{CH}), 6.48$ (brs, $1 \mathrm{H}, \mathrm{PH}), 7.2-7.9(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.40$ (d, J=60.3 Hz, Me), 24.98 (d, $J=64.83 \mathrm{~Hz}, \mathrm{C}-5$), 37.63 (d, $J=3.34 \mathrm{~Hz}, \mathrm{C}-4$), 52.42 and 53.61 ($2 \mathrm{~s}, 2 \times \mathrm{COOMe}$), 68.12 (d, $J=66.17 \mathrm{~Hz}, \mathrm{C}-2$), $79.86(\mathrm{~d}, J=16.04 \mathrm{~Hz}, \mathrm{C}-3)$, $127.78(\mathrm{~d}, J=93.56 \mathrm{~Hz}, x-\mathrm{Ph}), 128.06(\mathrm{~d}, J=11.36 \mathrm{~Hz}, m-\mathrm{Ph}), 131.08(\mathrm{~d}, J=10.04 \mathrm{~Hz}$, o - Ph), 131.72 ($\mathrm{d}, J=1.32 \mathrm{~Hz}$, triazole C-5'), 132.60 ($\mathrm{d}, J=3.34 \mathrm{~Hz}, p-\mathrm{Ph}$), 138.19 (s , triazole C-4'), 158.30 and 159.73 ($2 \mathrm{~s}, 2 \times \mathrm{COOMe}$) ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 69.908$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ (390.3): C, $52.31 ; \mathrm{H}, 4.39 ; \mathrm{N}, 10.77$. Found: C, 52.18; H, 4.26; N, 10.69.

For propargyl alcohol adduct $6 \mathrm{Ae}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.2-3.1$ (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $4.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 50.1(\mathrm{~d}, 1 \mathrm{H}, J=8.95 \mathrm{~Hz}, \mathrm{CH}), 7.2-7.8(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}$), 7.86 (s, 1 H , triazole H).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ (307.3): C, $54.72 ; \mathrm{H}, 5.90 ; \mathrm{N}, 13.67$. Found: C , 54.44; H, 5.65; N, 13.46.

For propargyl alcohol adduct 7A e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.2-3.1$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.95 \mathrm{~Hz}, \mathrm{CH}), 7.2-7.8(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}), 7.36(\mathrm{~s}, 1 \mathrm{H}$, triazole H$)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ (307.3): C, $54.72 ; \mathrm{H}, 5.90 ; \mathrm{N}, 13.67$. Found: C , 54.53; H, 5.71; N, 13.55.

For 3-methyl-1-butyn-3-ol adduct 6Af: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, $1.37\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CMe}_{2} \mathrm{OH}\right), 20 .-3.2\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5024(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=90.3 \mathrm{~Hz}, \mathrm{CH})$, 7.3-7.8 (m, 5H, Ph), $7.44(\mathrm{~s}, 1 \mathrm{H}$, triazole H$) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 70.782$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ (335.3): $\mathrm{C}, 57.31 ; \mathrm{H}, 6.61 ; \mathrm{N}, 12.53$. Found: C , 57.19; H, 6.56; N, 12.41.

For 3-methyl-1-butyn-3-ol adduct 7 $\mathrm{Af}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.46$ and $1.57\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CMe}_{2} \mathrm{OH}\right), 2.2-3.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=8.95 \mathrm{~Hz}$, $\mathrm{CH}), 7.05(\mathrm{~s}, 1 \mathrm{H}$, triazole H$), 7.2-7.8(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 72.918$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ (335.3): $\mathrm{C}, 57.31 ; \mathrm{H}, 6.61 ; \mathrm{N}, 12.53$. Found: C , 57.04; H, 6.48; N, 12.34.

For 2-butyn-1,4-diol adduct 6Ag: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.2-3.3$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 4.42 and $4.67\left(2 \mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 5.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.45 \mathrm{~Hz}, \mathrm{CH})$, 7.2-7.8 (m, 5H, Ph); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 23.89(\mathrm{~d}, J=6.00 \mathrm{~Hz}, \mathrm{Me}), 25.24(\mathrm{~d}$, $J=66.15 \mathrm{~Hz}, \mathrm{c}-5), 39.17(\mathrm{~d}, J=4.68 \mathrm{~Hz}, \mathrm{C}-4), 51.98$ and $55.33\left(2 \mathrm{~s}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 68.68$ (d, $J=70.18 \mathrm{~Hz}, \mathrm{C}-2$), 80.83 (d, $J=17.38 \mathrm{~Hz}, \mathrm{C}-3$), 129.55 (d, $J=93.56 \mathrm{~Hz}, x-\mathrm{Ph}$), 132.30 (d, $J=9.34 \mathrm{~Hz}, o-\mathrm{Ph}$), 133.67 ($\mathrm{d}, J=2.67 \mathrm{~Hz}, p-\mathrm{Ph}$), 137.03 ($\mathrm{d}, J=1.99 \mathrm{~Hz}$, triazole C-5'), 144.92 (s, triazole C-4').

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ (337.3): C, 53.41 ; H, 5.98; N, 12.46. Found: C, 53.22; H, 5.74; N, 12.32.

For acetylenedicarboxylic acid adduct 6Ah: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.2-3.1 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $5.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.36 \mathrm{~Hz}, \mathrm{CH}), 7.2-7.8(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 23.91$ (d, $J=6.68 \mathrm{~Hz}, \mathrm{Me}$), 25.43 (d, $J=68.16 \mathrm{~Hz}, \mathrm{C}-5$), 39.30 (d, $J=4.01 \mathrm{~Hz}, \mathrm{C}-4), 70.15(\mathrm{~d}, J=68.19 \mathrm{~Hz}, \mathrm{C}-2), 80.80(\mathrm{~d}, J=16.03 \mathrm{~Hz}, \mathrm{C}-3), 129.42$ (d, $J=11.36 \mathrm{~Hz}, m-\mathrm{Ph}), 132.14(\mathrm{~d}, J=10.03 \mathrm{~Hz}, o-\mathrm{Ph}), 133.91(\mathrm{~d}, J=2.67 \mathrm{~Hz}, p-\mathrm{Ph})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ (365.3): C, 49.32; H, 4.41; N, 11.50. Found: C, 49.11; H, 4.36; N, 11.42.
threo 2-Amino-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (3Ab). Catalytic hydrogenolysis of threo 2-azido-3-hydroxy-3-methyl-1-phenylphospholane 1-oxide (threo $3 \mathrm{Aa}, 0.896 \mathrm{~g}, 3.57 \mathrm{mmol}$) in methanol (10 mL) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at atmospheric pressure of hydrogen followed by filtration of the catalyst, removal of the solvent under reduced pressure, and column chromatography on silica gel gave the N-glycoside of phosphanyl sugar, $3 \mathrm{Ab}(0.795 \mathrm{~g}, 3.53 \mathrm{mmol}$, recrystallized from benzene) in 99% yield; mp $163-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}, 3 \mathrm{H}$, Me), 1.8-2.8 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.39\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=5.72 \mathrm{~Hz}, \mathrm{CH}\right), 7.3-7.9(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) \& $23.39\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.02 \mathrm{~Hz}, \mathrm{Me}\right), 25.97\left(\mathrm{~d}, J_{\mathrm{CP}}=62.16 \mathrm{~Hz}, \mathrm{C}-5\right), 35.77$ (d, $\left.{ }^{2} J_{\mathrm{CP}}=5.33 \mathrm{~Hz}, \mathrm{C}-4\right), 60.58\left(\mathrm{~d}, J_{\mathrm{CP}}=75.53 \mathrm{~Hz}, \mathrm{C}-2\right), 79.04\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.36 \mathrm{~Hz}, \mathrm{C}-3\right)$, $127.84\left(\mathrm{~d}, J_{\mathrm{CP}}=93.56 \mathrm{~Hz}, x-\mathrm{Ph}\right), 128.30\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=11.35 \mathrm{~Hz}, m-\mathrm{Ph}\right), 131.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.69\right.$ $\mathrm{Hz}, 0-\mathrm{Ph}), 132.08\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=2.67 \mathrm{~Hz}, p-\mathrm{Ph}\right) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 68.257$; IR $\nu(\mathrm{KBr})$ 3040-3600 (br, OH, NH).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{P}$ (224.2): $\mathrm{C}, 58.92 ; \mathrm{H}, 6.74 ; \mathrm{N}, 6.25 ; \mathrm{P}, 13.81$. Found: C, 58.78; H, 6.14; N, 6.13; P, 13.98.

ACKNOWLEDGMENTS

This work was partially supported by a Grant-in-Aid for Scientific Research (No. 04304049) from the Japanese Ministry of Education, Science, Sports and Culture, by Shizuoka Science and Technology Foundation, by Nippon Soda Co. Ltd, and by Suzuroku Dyeing Co. Ltd. The authors also thank Professors H. Yamamoto and T. Hanaya of Okayama University for 500 MHz NMR analyses, Professor J. Kobayashi of Shizuoka Institute of Technology for 400 MHz NMR measurement, Professor A. Kakehi of Shinshu University for X-ray analyses (Rigaku AFC5S), and Sankyo Co. Ltd. for microanalyses.

REFERENCES AND NOTES

1. Presented at the XIXth International Carbohydrate Symposium, San Diego, CA, USA, August 9-14, 1998.
2. R. Goto, S. Inokawa, A. Sera, and S. Otani in Tantorui no Kagaku (Chemistry of Monosaccharides), Maruzen, Tokyo, 1988.
3. a) M. Yamashita, Y. Nakatsukasa, M. Yoshikane, H. Yoshida, T. Ogata, and S. Inokawa, Carbohydr. Res., 59, C12 (1977); b) M. Yamashita, Y. Nakatsukasa, H. Yoshida, T. Ogata, S. Inokawa, K. Hirotsu, and J. Clardy, ibid., 70, 247 (1979); c) M. Yamada and M. Yamashita, ibid., 95, C9 (1981); d) M. Yamashita, M. Yamada, K. Tsunekawa, T. Oshikawa, K. Seo, and S. Inokawa, ibid., 121, C4 (1983); ibid., 122, Cl (1983); e) M. Yamashita, M. Yamada, M. Sugiura, H. Nomoto, and T. Oshikawa, Nippon Kagaku Kaishi, 1207 (1987); f) H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem. Biochem., 42, 135 (1984).
4. M. Yamashita, M. Uchimura, A. Iida, L. Parkanayi, and J. Clardy, J. Chem. Soc., Chem Commun., 569 (1988).
5. M. Yamashita, A. Yabui, K. Suzuki, Y. Kato, M. Uchimura, A. lida, H. Mizuno, K. Ikai, T. Oshikawa, L. Parkanayi, and J. Clardy, J. Carbohydr. Chem., 16, 499 (1997).
6. C. Kibayashi and M. Akiba in Raifu Saiensu no Yuki Kagaku (Organic Chemistry for Life Science), Sankyo Shuppan, Tokyo, 1988, p 168.
7. A. F. Bochkov and G. E. Zaikov in Chemistry of the O-Glycosidic Bond, Pergamon Press, Oxford, 1979, Chapter 2.
8. J. T. Witkowski, R. K. Robins, R. W. Sidwell, and L. N. Simon, J. Med. Chem., 15, 1150 (1972).
9. a) H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. St. Clair, S. N. Lehrman, R. L. Gallo, D. Bolognesi, D. W. Barry, and S. Broder, Proc. Natl . Acad. Sci., USA, 82, 7096 (1985); b) R. Z. Sterzycki, I. Gazzouli, V. Brankovan, J. C. Martin, and M. W. Mansuri, J. Med. Chem., 33, 2150 (1990).
10. S. S. Cohen, Prog. Nucleic Acids Res. Mol. Biol., 5, 22 (1966).
11. J. J. Jaffe, Ann. N. Y. Acad. Sci., 255, 306 (1975).
12. a) R. Vince and M. Hua, J. Med. Chem., 33, 17 (1990); b) M. Yoshikawa, N. Murakami, Y. Inoue, S. Hatakeyama, and I. Kitagawa, Chem. Pharm. Bull., 41, 636 (1993); c) D. W. Norbeck, S. Spanton, S. Broder, and H. Mitsuya, Tetrahedron Lett., 30, 6263 (1989); d) M. R. Dyson, P. L. Coe, and P. L. Walker, J. Med. Chem., 34, 2782 (1991).
13. L. D. Quin, J. P. Gratz, and T. P. Barket, J. Org. Chem., 33, 1034 (1968).
14. K. Ikai, A. Iida, and M. Yamashita, Synthesis, 595 (1989).
15. R. U. Lemieux and D. R. Lineback, Can. J. Chem. ,43, 94 (1965).
16. K. Nishizawa and J. Yoshimura in Tansui Kabutsu (Carbohydrates), Asakura Shoten, Tokyo, 1980, Chapter 4.
17. F. Micheel and A. Klearer, Adv. Carbohydr. Chem., 16, 85 (1961).
18. L. Hough and A. C. Richardson, in Rodd's Chemistry of Carbon Compounds, Vol IF; S. Coffey Ed.; Elsevier, Amsterdam, 1967, Chapter 23.
19. Y. Kita, F. Itoh, O. Tamura, K. Y. Yaah, and Y. Tamura, Tetrahedron Lett., 1431 (1987).
20. S. J. Danishefsky, M. P. Deninno, and S. Chen, J. Am. Chem. Soc., 110, 3929 (1988).
21. C. E. Ballou, Adv. Carbohydr. Chem., 9, 59 (1954).
22. M. P. Bardolph and G. H. Coleman, J. Org. Chem., 15, 169 (1950).
23. A. Dyfverman and B. Lindberg, Acta Chem. Scand., 4, 878 (1950).
24. X-ray data for measurement and analysis of structure of 2 A :

Rigaku AFC5S X-ray diffractometer with four-axis goniometer was used. Crystal data: Empirical formula, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{BrP}$; Crystal color, Habit, colorless, prismatic; Crystal dimensions, $1.00 \times 0.90 \times 1.00 \mathrm{~mm}$; Crystal system, monoclinic; Lattice type, primitive; No. of reflections used for unit cell determination (2 θ range), 25 (29.94-34.76 ${ }^{\circ}$); Omega scan peak width at half-height, 0.24°; Lattice parameters, $a=15.02 \AA, b=10.134 \AA, c=20.28 \AA, \alpha=90.00^{\circ}, \beta=107.3^{\circ}, \gamma=$ $90.00^{\circ}, \mathrm{V}=2948.72 \AA^{3}$; Space group, $\mathrm{P} 2_{1} / \mathrm{a}(\# 14)$; Z value, $4 ; \mathrm{D}_{\text {cale }}, 1.571 \mathrm{~g} / \mathrm{cm}^{3}$; $\mathrm{F}_{000}, 1400 ; \mu(\mathrm{MoK} a), 31.29 \mathrm{~cm}^{-1}$. Intensity measurments: Diffractometer, Rigaku AFC5S; Radiation, MoK a $(\lambda=0.71069 A)$, graphite monochromated; Attenuator, Ni foil (factors=2.3, 5.2, 11.7); Take-off angle, 6.0°; Detector aperture, 6.0 mm horizontal, 6.0 mm vertical; Diameter of beam collimator, 0.5 mm ; Crystal to detector distance 400 mm ; Temperature $22^{\circ} \mathrm{C}$; Scan type, $\omega-2 \theta$; Scan rate, $32.0^{\circ} / \mathrm{min}$ (in ω)-up to 2 rescans; Scan width, $(1.00+0.30 \tan \theta)^{\circ}$; $2 \theta_{\text {max }}, 55.0^{\circ}$; No. of reflections measured, total 6150, unique 5862 comections, Lorentz-polarization. Structure solution and refinement: Structure solution, Direct methods (TEXSAN); Refinement, full-matrix least-squares; Function minimized, $\sum \mathrm{w}(\mid \mathrm{Fol}-\mathrm{IFcl})^{2}$; Least squares weights, $1 / \sigma^{2}(\mathrm{Fo})=4 \mathrm{Fo}^{2} / \sigma^{2}\left(\mathrm{Fo}^{2}\right) ; \mathrm{p}$-factor, 0.03 ; Anomalous dispersion, all non-hydrogen atoms; No. observations (I > 3.00σ (I)), 1426; No. variables, 307; Reflection/Parameter ratio, 4.64; Residuals: R; Rw, 0.083; 0.090; Goodness of fit indicator, 2.82; Max shift/Error in final cycle, 0.39; Maximum peak in final diff. map, $1.19 \mathrm{e}^{-} / \AA^{3}$; Minimum peak in final diff. map, $-0.73 \mathrm{e} / \mathrm{A}^{3}$.

X-ray structure data for 2A.
Selected bond distances in A : $P(1)-C(2) 1.86, P(1)-C(5) 1.80, C(2)-C(3) 1.54$, C(3)-C(4) 1.55, C(4)-C(5) 1.47.
Selected bond angles in degree: $\quad \mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(5) 94, \quad \mathrm{P}(1)-\mathrm{C}(2)-\mathrm{C}(3) 103$, C(2)-C(3)-C(4) 104, C(3)-C(4)-C(5) 108, P(1)-C(5)-C(4) 108.
Selected torsional angles in degree: $\quad \mathrm{P}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) 43, \mathrm{P}(1)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ 31, $\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(5)-\mathrm{C}(4)-4, \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-49, \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(5)-24$.

These data imply that the conformation of 2 A may be in a ${ }^{2} E$ form.
25. X-ray data for measurement and analysis of structure of 3Aa:

Rigaku AFC5S X-ray diffractometer with four-axis goniometer was used. Crystal data: Empirical formula, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$; Crystal color, Habit, colorless, prismatic; Crystal dimensions, $0.16 \times 0.82 \times 0.98 \mathrm{~mm}$; Crystal system, monoclinic; Lattice type, primitive; No. of reflections used for unit cell determination (2 θ range), 23 (20.1-29.7 ${ }^{\circ}$); Omega scan peak width at half-height, 0.21°; Lattice parameters, $\mathrm{a}=25.18 \AA, \mathrm{~b}=9.834 \AA, \mathrm{c}=14.415 \AA, \quad \alpha=90.00^{\circ}, \beta=122.23^{\circ}, \gamma=$ $90.00^{\circ}, V=3020 \AA^{3}$; Space group, $\mathrm{C} 2 / \mathrm{c}(\# 15)$; Z value, $8 ; \mathrm{D}_{\text {calc }}, 1.630 \mathrm{~g} / \mathrm{cm}^{3}$; $\mathrm{F}_{000}, 1520 ; \mu(\mathrm{MoK} \alpha), 7.19 \mathrm{~cm}^{-1}$. Intensity measurments: Diffractometer, Rigaku AFC5S; Radiation, MoK $\alpha(\lambda=0.71069 \AA$), graphite monochromated; Attenuator, Ni foil (factors $=2.3,5.2,11.7$); Take-off angle, 6.0°; Detector aperture, 6.0 mm horizontal, 6.0 mm vertical; Diameter of beam collimator, 0.5 mm ; Crystal to detector distance 400 mm ; Temperature $22^{\circ} \mathrm{C}$; Scan type, $\omega-2 \theta$; Scan rate, $32.0^{\circ} / \mathrm{min}$ (in ω)-up to 2 rescans; Scan width, $(1.15+0.30 \tan \theta)^{\circ}$;
$2 \theta_{\text {max }}, 55.0^{\circ}$; No. of reflections measured, total 3768 , unique 3684 corrections, Lorentz-polarization. Structure solution and refinement: Structure solution, Direct methods (TEXSAN); Refinement, full-matrix least-squares; Function minimized, $\Sigma \omega(\mathrm{IFol}-\mathrm{Fcl})^{2}$; Least squares weights, $1 / \sigma^{2}(\mathrm{Fo})=4 \mathrm{Fo}^{2} / \sigma^{2}\left(\mathrm{Fo}^{2}\right) ;$ p-factor, 0.03 ; Anomalous dispersion, all non-hydrogen atoms; No. observations ($I>3.00 \sigma(\mathrm{I})$), 1100; No. variables, 163; Reflection/Parameter ratio, 6.75; Residuals: R; Rw, $0.215 ; 0.301$; Goodness of fit indicator, 7.53; Max shift/Error in final cycle, 1.35; Maximum peak in final diff. map, $6.54 \mathrm{e}^{-1} \dot{\AA}^{3}$; Minimum peak in final diff. map, $-0.88 \mathrm{e}^{-/} \mathrm{A}^{3}$.

X-ray structure data for 3Aa.
Selected bond distances in $A: \quad P(1)-C(1) 1.85(3), \quad C(1)-C(2) 1.56(5)$, $\mathrm{C}(2)-\mathrm{C}(3) 1.54(4), \mathrm{C}(3)-\mathrm{C}(4) 1.43(5), \mathrm{C}(4)-\mathrm{P}(1) 1.84$ (4).
Selected bond angles in degree: $\quad \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2) 101(2), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 105(3)$, $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) 111(3), \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{P}(1) 105(3), \mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(1) 96(2)$.
Selected torsional angles in degree: $P(1)-C(2)-C(3)-C(4)-43(3), \quad C(1)-C(2)-$ $\mathrm{C}(3)-\mathrm{C}(4) \quad 51(4), \quad \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{P}(1) \quad-30(4), \quad \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(1) \quad 3(3)$, C(4)-P(1)-C(1)-C(2) 24(2).

These data imply that the conformation of 3 A a may be in a ${ }^{2} E$ form.
26. J. Davoll and B. A. Lowy, J. Am. Chem. Soc., 53, 1650 (1951).
27. N. Yamaoka, K. Aso, and K. Matsuda, J. Org. Chem., 30, 145 (1965).
28. G. A. Howard, B. Lythgoe, and A. R. Todd, J. Chem. Soc., 1052 (1947).
29. M. J. Robins and R. K. Robins, J. Am. Chem. Soc., 67, 4934 (1965).
30. a) U. Niedballa and H. Vorbruggen, J. Org. Chem., 39, 3654 (1974); b) K. Augustyns, J. Rozenski, A. V. Aerschoy, G. Janssen, and P. Herdewijin, ibid., 58, 2977 (1993).
31. a) G. Shaw, R. N. Warrener, M. H. Maguire, and R. K. Ralph, J. Chem. Soc., 2294 (1958); b) Y. F. Shealy and C. A. O'Dell, J. Heterocycl. Chem., 13, 1041 (1976).
32. I. Goodman, Federation Proceedings, Fed. Am. Soc. Exp. Biol., 1 5, 264 (1956).
33. D. J. Hlasta and J. H. Ackerman, J. Org. Chem., 59, 6184 (1994).
34. M. Yamashita, Y. Kato, K. Suzuki, and T. Oshikawa, Heterocyclic Commun., 4, 411 (1998).
35. X-ray data for measurement and analysis of structure of 6 d .

Rigaku AFC7R X-ray diffractometer with four-axis goniometer was used. Crystal data: Empirical formula, $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$; Formula weight, 421.39; Crystal color, Habit, colorless, prismatic; Crystal dimensions, $020 \times 0.20 \times 0.30 \mathrm{~mm}$; Crystal system, monoclinic; Lattice type, primitive; No. of reflections used for unit cell determination (2θ range), 25 ($54.5-57.0^{\circ}$); Omega scan peak width at half-height, 0.22°; Lattice parameters, $\mathrm{a}=14.243 \AA, \mathrm{~b}=10.494 \AA, \mathrm{c}=14.486 \AA, \beta=98.138^{\circ}$, $\mathrm{V}=1589.6 \AA^{3}$; Space group, $\mathrm{P} 2 \mathrm{I}_{1} / \mathrm{n}(\# 9) ; Z$ value, $4 ; \mathrm{D}_{\text {catc }}, 1.306 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}, 888.00$; $\mu(\mathrm{CuK} \alpha), 14.86 \mathrm{~cm}^{-1}$. Intensity measurments: Diffractometer, Rigaku AFC7R; Radiation, CuK a $(\lambda=1.54178 \AA)$, graphite monochromated; Attenuator, Ni foil (factors $=1.00,9.48,9.48,9.43$); Take-off angle, 6.0°; Detector aperture, 9.0 mm horizontal, 13.0 mm vertical; Crystal to detector distance 235 mm ; Temperature 20.0 ${ }^{\circ} \mathrm{C}$; Scan type, $\omega-2 \theta$; Scan rate, $16.0^{\circ} / \mathrm{min}$ (in ω)-up to 3 scans; Scan width, $(1.78+0.30 \tan \theta)^{\circ} ; 2 \theta_{\text {max }}, 120.1^{\circ}$; No. of reflections measured, total 3537; Corrections, Lorentz-polarization. Structure solution and refinement: Structure
solution, Direct methods (SHELXS86); Refinement, full-matrix least-squares; Function minimized, $\quad \Sigma \mathrm{w}(\mid \mathrm{Fol}-\mathrm{Fcl})^{2}$; \quad Least squares weights, $\quad 1 / \sigma^{2}(\mathrm{Fo})=$ $4 \mathrm{Fo}^{2} / \sigma^{2}\left(\mathrm{Fo}^{2}\right)$; p-factor, 0.00 ; Anomalous dispersion, all non-hydrogen atoms; No. observations ($\mathrm{I}>3.00 \sigma(\mathrm{I})$), 2337; No. variables, 358; Reflection/Parameter ratio, 6.53; Residuals: R; Rw, 0.056; 0.043; Goodness of fit indicator, 3.19; Max shift/Error in final cycle, 2.73; Maximum peak in final diff. map, $0.36 \mathrm{e}^{\mathrm{e}} / \mathrm{A}^{3}$; Minimum peak in final diff. map, $-0.34 \mathrm{e} / \AA^{3}$.

Tables of atomic coordinates, bond lengths, and bond angles have been deposited with the Cambridge Crystallographic Data Centre. These tables may be obtained on request from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 IEZ, UK.
36. M. Yamashita, M. Uchimura, A. Iida, L. Parkanayi, and J. Clardy, J. Chem. Soc., Chem. Commun., 569 (1988).
37. a) J. Emsley and D. Hall in The Chemistry of Phosphorus, Harper \& Row, London, 1976, p 157; b) L. D. Quin and T. P. Barket, J. Chem. Soc., Chem. Commun., 788 (1967); c) W. B. McCormack, Org. Syn., 43, 73 (1963).
38. a) K. Hunger, U. Hasserodt, and F. Korte, Tetrahedron, 20,1563 (1964); b) G. Kresze, J. Firl, H. Zimmer, and U. Wollnic, Tetrahedron, 20, 1593 (1964).
39. L. D. Quin, J. P. Gratz, and T. P. Barket, J. Org. Chem., 33, 1034 (1968).
40. a) L. D. Quin in 1,4-Cycloaddition Reactions: The Diels-Alder Reaction in Heterocyclic Syntheses, J. Hamer Ed.; Academic Press, New York, 1967, Chapter 3; b) L. D. Quin in The Heterocyclic Chemistry of Phosphorus, Wiley-Interscience, New York, 1981, Chapter 2; c) J. Emsley and D. Hall in The Chemistry of Phosphorus, Harper \& Row Publishers, London, 1976, Chapter 4.

